右一为美国南加州大学雷纳德·阿德勒曼博士,生物电脑之父。
DNA生物电脑的最大优点,还在于它惊人的存贮容量和运算速度。纳米技术家认为,DNA具有在极小空间里存储海量信息的自然特性,遗传密码符号的间距仅有0.34纳米,1立方米的DNA溶液可存储1万亿亿比特数据;1立方厘米DNA溶液将超过1万亿片CD光盘的存储容量。具有生命特征的这种电脑,运算次数甚至可以达到每秒10的20次方或更高,消耗的能量却微不足道,只有普通电脑的十亿分之一。据说,十几个小时的DNA计算,就相当于人类社会所有电脑问世以来的运算总量。我国国家智能计算机研究开发中心主任、主持研制“曙光”超级电脑的李国杰院士提出,生物计算机要成为一种通用计算机,必须先建立与图林机类似的计算模型。现在DNA电脑最大的问题是很难检测计算结果,一旦这个问题得到解决,DNA生物电脑(芯片)将很快进入实用阶段。
据报道,2001年11月,以色列科学家已经成功研制出世界上第一台可编程DNA电脑,这种电脑即使有一万亿“台”,其体积也不超过一滴水的大小。然而,如何真正替代硅芯片成为普遍使用的DNA微处理器,科学界仍然面临着许多挑战。DNA链的并行处理能力非常适合解决类似“推销员问题”,但随着问题复杂程度的增加,DNA数量也将呈几何级数上升。如果推销员要走遍200个城市,生物电脑所需要DNA分子的总量甚至会超过地球的重量。因而,有些专家更倾向于一种“杂交”电脑,让硅芯片和DNA芯片共同承担计算任务。
阿德勒曼教授曾经说道:“我并不期待构建一台像PC机那样的DNA电脑,但是,生物电脑可以做用其他技术所不能完成的工作。”他预言说,到2002年DNA电脑就可以解决有20个变量的数学问题。DNA电脑将采用其本身的“语言”,以四进制系统来编码,与“人工生命”的研究范畴将融合在一起。对此,阿德勒曼认为,今后的工程技术人员应该接受更加广泛的科学教育,使自己成为“通才”,全面掌握数学、物理、化学、生物学和计算机科学知识,才能做出更多的发明和创新。或许,这正是他本人的切身体会。
生物计算机一旦研制成功,可能会在计算机领域内引起一场划时代的革命。作为以生物界处理问题的方式为模型的计算机,目前主要有以下几类:
1. 生物分子或超分子芯片:立足于传统计算机模式,从寻找高效、体微的电子信息载体及信息传递体入手,目前已对生物体内的小分子、大分子、超分子生物芯片的结构与功能做了大量的研究与开发。“生物化学电路” 即属于此。2. 自动机模型:以自动理论为基础,致力与寻找新的计算机模式,特别是特殊用途的非数值计算机模式。目前研究的热点集中在基本生物现象的类比,如神经网络、免疫网络、细胞自动机等。不同自动机的区别主要是网络内部连接的差异,其基本特征是集体计算,又称集体主义,在非数值计算、模拟、识别方面有极大的潜力。3. 仿生算法:以生物智能为基础,用仿生的观念致力于寻找新的算法模式,虽然类似于自动机思想,但立足点在算法上,不追求硬件上的变化。4. 生物化学反应算法:立足于可控的生物化学反应或反应系统,利用小容积内同类分子高拷贝数的优势,追求运算的高度并行化,从而提供运算的效率。DNA计算机属于此类。
您可能对这些感兴趣: |
|
共有评论0条 点击查看 | ||
编辑:
金亮
|